New Approximations for the Area of the Mandelbrot Set

نویسنده

  • HIEU D. NGUYEN
چکیده

Abstract. Due to its fractal nature, much about the area of the Mandelbrot set M remains to be understood. While a series formula has been derived by Ewing and Schober to calculate the area of M by considering its complement inside the Riemann sphere, to date the exact value of this area remains unknown. This paper presents new improved upper bounds for the area based on a parallel computing algorithm and for the 2-adic valuation of the series coefficients in terms of the sum-of-digits function.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dynamics of Mandelbrot Set with Transcendental Function

These days Mandelbrot set with transcendental function is an interesting area for mathematicians. New equations have been created for Mandelbrot set using trigonometric, logarithmic and exponential functions. Earlier, Ishikawa iteration has been applied to these equations and generate new fractals named as Relative Superior Mandelbrot Set with transcendental function. In this paper, the Mann it...

متن کامل

New Maximum Power Point Tracking Technique Based on P&O Method

In the most described maximum power point tracking (MPPT) methods in the literatures, the optimal operation point of the photovoltaic (PV) systems is estimated by linear approximations. However, these approximations can lead to less optimal operating conditions and significantly reduce the performances of the PV systems. This paper proposes a new approach to determine the maximum power point (M...

متن کامل

t-BEST APPROXIMATION IN FUZZY NORMED SPACES

The main purpose of this paper is to find t-best approximations in fuzzy normed spaces. We introduce the notions of t-proximinal sets and F-approximations and prove some interesting theorems. In particular, we investigate the set of all t-best approximations to an element from a set.

متن کامل

ar X iv : m at h - ph / 0 51 10 74 v 2 1 D ec 2 00 5 1 / f Noise in Fractal Quaternionic Structures

We consider the logistic map over quaternions H ∼ R 4 and different 2D projections of Mandelbrot set in 4D quaternionic space. The approximations (for finite number of iterations) of these 2D projections are fractal circles. We show that a point process defined by radiuses Rj of those fractal circles exhibits pure 1/f noise.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014